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Abstract: Energy from the sun and the wind can alleviate the pressure on traditional sources that has been 

considerably depleted. Many stages of renewable energy conversion require DC-DC converters with high voltage 

gain and high power. The applications where electrical isolation is not necessary, transformer less high gain 

converters can be used in order to avoid the difficulty of using large capacity transformers. This is a step up 

resonant converter which can achieve high voltage-gain using LC parallel resonant tank. Zero-voltage-switching 

(ZVS) of semiconductor devices in a resonant converter can be achieved by resonant devices. It is characterized by 

ZVS turn-on and nearly ZVS turn-off of main switches. Moreover, the equivalent voltage stress of the 

semiconductor devices is lower than other resonant step up converters. A resonant converter is simulated using 

MATLAB/SIMULINK and experimental results are also verified. 

Keywords: Frequency Modulation, Resonant Converter, Zero Voltage Switching, Voltage Stress. 

I.   INTRODUCTION 

At present, the voltages over the DC stages in the generation equipments of the renewable energy sources are relatively 

low, in the range of several hundred volts to several thousand volts, hence, high-power high-voltage step-up DC-DC 

converters are required to deliver the produced electrical energy to HVDC grid. Today’s consumer equipment such as 

computers, fluorescent lights or LED lighting, households, businesses, industrial appliances and equipment need the DC 

power for their operation. Some renewable energy units generate in a DC way, so it is necessary to use DC-DC converters 

in mid stages. Step-up or boost converters are theoretically able to achieve infinitely high voltage conversion ratios; 

however, the maximum gain is practically limited by circuit imperfections, such as parasitic elements and switch 

commutation times. Resonant converters have been demonstrated to be a feasible option for high-voltage power 

converter. The disadvantage of the resonant converter is that it requires large capacity transformers [1]. This resonant 

converter has characteristics like ZVS turn ON and turns off, and also less voltage stress across semiconductor devices. 

With Zero-Voltage Switching (ZVS), converters exhibit lower switching loss and are widely used in many applications. 

II.   RESONANT CONVERTER 

A  resonant step-up DC-DC converter is studied, which can realize soft switching for main switches and diodes and large 

voltage-gain, and also has relatively lower equivalent voltage stress of the semiconductor devices and bidirectional 

magnetized resonant inductor. The operation principle of the converter is also discussed. 

The resonant converter is shown in Fig. 1. The converter is composed of a full-bridge switch network, which is made up 

by Q
1 through Q

4
, a LC parallel resonant tank, a voltage doubler rectifier and two input blocking diodes, D

b1 and D
b2

. The 

operating waveforms are shown in Fig. 2 and detailed operation modes of the proposed converter are also explained. For 

the converter, Q
2 

and Q
3 

are tuned on and off simultaneously, Q
1 and Q

4 are tuned on and off simultaneously. For these 

switches, 180 degree phase shifted operation is carried out to realize ZVS. This LC resonant converter has ability to vary the 

gain depending on the switching frequency of the semiconductor switches. 
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Fig.1: Circuit diagram 

A. Modes of Operation: 

(a). Mode 1[t
0 − t

1
] 

During this mode, Q
1 

and Q
4 are turned on resulting in the positive input voltage V

in across the LC parallel resonant tank, 

i.e. 

v
Lr

=v
Cr

=V
in

 

Equivalent circuit of mode1 operation is shown in fig .3. The converter operates similar to a conventional Boost converter 

and the resonant inductor Lr acts as the Boost inductor with the current through it increasing linearly from I
0
. The load 

is supplied by C
1 and C

2
. At t

1
, the resonant inductor current i

Lr reaches I
1
. 

 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Theoretical waveforms 
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Fig. 3: Mode1 operation 

 (b). Mode 2[t
1 − t

3
] 

Mode 2 is divided into two regions : t1-t2 & t2-t3. At t
1
, Q

1 and Q
4 are turned off and after that L

r resonates with C
r
, v

Cr 

decreases from V
in 

and i
Lr increases from I

1 in resonant form. Taking into account the parasitic output capacitors of Q
1 

through Q
4 

and junction capacitor of D
b2

, the equivalent circuit of the converter after t1 is shown in Fig. 2, in which C
Db2

, 

C
Q1 and C

Q4 are charged, C
Q2 and C

Q3 are discharged. In order to realize zero-voltage-switching (ZVS) for Q
2 and Q

3
, an 

additional capacitor, whose magnitude is about 10 times with respect to C
Q2

, is connected in parallel with D
b2

. Hence, the 

voltage across D
b2 is considered unchanged during the charging/discharging process and Db2 is equivalent to be shorted. 

Due to Cr is much larger than the parasitic capacitances, the voltages across Q
1 and Q

4 increase slowly. As a result, Q
1 and 

Q
4 
are turned off at almost zero voltage in this mode. When v

Cr drops to zero, i
Lr reaches its maximum magnitude. After 

that, v
Cr increases in negative direction and i

Lr declines in resonant form. At t
2
, v

Cr = −V
in

, the voltages across Q
1 and Q

4 

reach V
in

, the voltages across Q
2 and Q

3 fall to zero and the two switches can be turned on under zero-voltage condition. 

The voltage across Q
1 is kept at V

in
. The equivalent circuit of the converter after t

2 is shown in Fig. 5, in which D
2 and D

3  

are the anti-parallel diodes of Q
2 

and Q
3
, respectively. This mode runs until vCr increases to Vo/2, Q4 reaches Vo/2 and the 

voltage across Db2  reaches Vo/2 − Vin. 

                               

        

 

 

 

 

 

                

 

 

 

Fig. 4: Equivalent circuit of mode 2 [t
1 
− t

2
]                                    Fig. 5: Equivalent circuit of mode 2 [t2 − t3] 



ISSN  2349-7815 
 

International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)  
Vol. 4, Issue 2, pp: (7-14), Month: April - June 2017, Available at: www.paperpublications.org 

 

Page | 10 
Paper Publications 

    

Fig. 6: Mode 2 operation                                                                  Fig. 7: Mode 3 operation 

(c). Mode 3[t
3 − t

4
] 

At t
3
, v

Cr = -V
o
/2, DR1 conducts naturally, C1 is charged by iLr through DR1, vCr keeps unchanged, iLr decreases linearly. At 

t
4
, i

Lr =0. Equivalent circuit of mode 3 operation is shown in fig. 7. 

 (d). Mode 4[t
4 − t

5
] 

At t
4
, i

Lr decreases to zero and the current flowing through D
R1 

also decreases to zero, and D
R1 is turned off, therefore, 

there is no reverse recovery.  After t
4
, L

r 
resonates with C

r
, C

r is discharged through L
r
, v

Cr 
increases from -V

o
/2 in 

positive direction, i
Lr increases from zero in negative direction. Equivalent circuit is shown in fig. 8. Meanwhile, the 

voltage across Q
4 

declines from V
o
/2.  At t

5
, v

Cr = -V
in

, i
Lr

= -I
3
. 

 

Fig. 8: Mode 4 operation                                                                 Fig. 9: Mode 5 operation 

 (e). Mode 5[t
5 − t

6
] 

If Q
2 

and Q
3 are turned on before t

5
, then after t

5
, L

r is charged by Vin through Q
2 and Q

3
, i

Lr increases in negative 

direction, the mode is similar to Mode 1.  Equivalent circuit is shown in fig. 9.  

The operation modes during [t
6
, t

10
] are similar to the modes 2, 3 and 4 and the only difference is in direction. During [t

6
, 

t
10

], Q
2 and Q

3 are turned off at almost zero voltage, Q
1 and Q

4 are turned on with ZVS. 
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III.   SIMULATION MODEL AND RESULTS  

In order  to  verify  the  operation  principle  and  the  theoretical analysis, a  converter is simulated with MATLAB/SIMULINK  

simulation   software   and  the simulation  parameters are listed in Table.1. All switches using in simulation are ideal 

switches. Switching frequency is determined by the resonant parameters and here f
r 
is taken as 12kHz. Duty ratio is found as 

0.35 from the analysis of the converter. The converter can operate below and above of the resonant frequency. 

Table I: Simulation parameters 

Input voltage Vin 20 V 

Output voltage Vo 400 V 

Resonant inductance Lr 124 μH 

Resonant capacitance Cr 1.5μF 

Filter capacitance C1, C2 22 μF 

Duty cycle D 0.35 

A. Control Strategy: 

Control pulses for switch are generated by PWM  method. Usually it is done by comparing a saw tooth carrier and a reference 

value. A repeating sequence of required frequency is compared with a constant 0.35, the duty ratio to generate a pulse with 35% 

ON time. Whenever repeating sequence is less than the constant, it will output a high value and if constant is smaller, it will 

output a low value. By varying the value of constant, duty ratio of MOSFET can be controlled. Out of four, two switches 

have same switching instants and remaining two have the same instants. Two pulses with 180 degree phase shifting is 

generated by the method of logical operations as shown in fig.13. Pulse output from the logic circuit is shown in Fig. 14. 

 

Fig. 13: Pulse generation circuit 

 

Fig. 14: Pulse output from logical circuit 
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B.  Simulink Model: 

Simulink model of step up resonant converter is shown in fig.15. MOSFET’s are used as switches. Output voltage and 

stresses across switches are analyzed from the simulation results.  

Fig. 15: Simulink model 

C. Simulation Results: 

Fig. 16(a, b) shows the simulation results at the input voltage 20V. At  3kHz, output voltage is 350V and at 11kHz , output 

voltage is 60V. Output voltage of step up converter is increasing as switching frequency is decreasing. 

  

           Fig. 16 (a): Output voltage (VO) at  fs = 3kHz                                           Fig. 16 (b): Output voltage (VO) at  fs = 11kHz                                    

As shown in fig. 18 and fig. 19, the voltage stress of Q
1 

and Q
2 is Vo/2, the voltage stresses of Q

3 and Q
4 is also less 

compared to output voltage. The peak voltage across the LC resonant tank is Vo/2, only half of the output voltage  and 

hence voltage rating of capacitor can be taken as half of output voltage.   



ISSN  2349-7815 
 

International Journal of Recent Research in Electrical and Electronics Engineering (IJRREEE)  
Vol. 4, Issue 2, pp: (7-14), Month: April - June 2017, Available at: www.paperpublications.org 

 

Page | 13 
Paper Publications 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Resonant voltage & current 

From   the fig. 18 and fig. 19, it can be seen that, Q
1 

through Q
3 are turned on under zero voltage condition and when they are 

turned off, the voltage across the device increases slowly from zero. Thus from the simulation results, it is verified that 

switches are turned on at zero voltage and turned off nearly at zero voltage. 

 

 

 

 

 

 

 

 

 

 

Fig. 18: ZVS of Q3 (lower switch)                                                     Fig. 19: ZVS of Q1 (upper switch) 

Fig. 20 and fig. 21 shows the efficiency curves of resonant converter. Fig. 20 shows the efficiency at different output 

loads and fig. 21 shows the efficiency at different input voltages. It can be seen (Fig. 21) that efficiency can be up to 

95.5%. 

  

Fig. 20: Efficiency at different output power                                                     Fig. 21: Efficiency at different input voltage 
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IV.   CONCLUSIONS 

The resonant  DC-DC converter which can achieve very high step-up voltage gain (about 10 to 20 times) and it is suitable for 

high-power high-voltage applications. The converter utilizes the resonant inductor to deliver power by charging from the 

input and discharging to the output. The resonant capacitor is employed to achieve zero-voltage turn-on and turn-off for the 

active switches and ZCS for the rectifier diodes. The parameters of the resonant tank determine the maximum switching 

frequency, the range of switching frequency and current ratings of active switches and diodes. The converter is controlled by 

the variable switching frequency. Simulation results verify the operation principle of the converter and parameters selection of 

the resonant tank. 
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